000 01625naa a2200217 a 4500
003 AR-LpUFIB
005 20250311170422.0
008 230201s2000 xx o 000 0 eng d
024 8 _aDIF-M6700
_b6837
_zDIF006111
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aKrasnogor, Natalio
245 1 0 _aA memetic algorithm with self-adaptive local search :
_bTSP as a case study
300 _a1 archivo (268,7 kB)
500 _aFormato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aIn this paper we introduce a promising hybridization scheme for a Memetic Algorithm (MA). Our MA is composed of two optimization processes, a Genetic Algorithm and a Monte Carlo method (MC). In contrast with other GA-Monte Carlo hybridized memetic algorithms, in our work the MC stage serves two purposes: -- when the population is diverse it acts like a local search procedure and -- when the population converges its goal is to diversify the search. To achieve this, the MC is self-adaptive based on observations from the underlying GA behavior; the GA controls the long-term optimization process. We present preliminary, yet statistically significant, results on the application of this approach to the TSP problem.We also comment it successful application to a molecular conformational problem: Protein Folding.
534 _aInternational Genetic and Evolutionary Computation Conference (2000 jul., 8-12 : Las Vegas), pp. 897-994.
650 4 _aALGORITMOS
700 1 _aSmith, Jim
856 4 0 _uhttp://goo.gl/HYAhO8
942 _cCP
999 _c55893
_d55893