000 | 01568nam a2200217 a 4500 | ||
---|---|---|---|
003 | AR-LpUFIB | ||
005 | 20250311170358.0 | ||
008 | 230201s2009 xxu r 000 0 ||| d | ||
020 | _a9780521424264 | ||
024 | 8 |
_aDIF-M5711 _b5815 _zDIF005335 |
|
040 |
_aAR-LpUFIB _bspa _cAR-LpUFIB |
||
100 | 1 | _aArora, Sanjeev | |
245 | 1 | 0 |
_aComputational complexity : _bA modern approach |
260 |
_aNueva York : _b Cambridge University Press, _c2009 |
||
300 | _axxiv, 579 p. | ||
505 | 0 | _a 0. Notational conventions -- 1. The computacional model- and why it doesn’t matter. -- 2. NP and NP complétense. -- 3. Diagonalization. -- 4. Space complexity. -- 5. The polinomial hierarchy and alternations. -- 6. Boolean circuits. -- 7. Randomized computation. -- 8. Interactive Prof.. -- 9. Cryptography. -- 10. Quantum computation. -- 11. PCP theorem and hardness of approximation: An introduction. -- 12. Decision trees. -- 13. Comunication complexity. -- 14. Circuit lower bpunds: Complexity theory’s Waterloo. -- 15. Proof complexity. -- 16. Algebraic computation models. -- 17. Complexity of counting. -- 18. Average case complexity: Levin’s theory. -- 19. Hardness amplification and error-correcting codes. -- 20. Derandomization. -- 21. Pseudorandom constructions: Expander and extractors. -- 22. Proof of PCP theorems and the Fourier transform technique. -- 23. Why are circuit lower bounds so difficult? -- Appendix: Mathematical background. | |
650 | 4 | _aCOMPLEJIDAD COMPUTACIONAL | |
650 | 4 | _aMODELOS COMPUTACIONALES | |
700 | 1 | _aBarak, Boaz | |
942 | _cBK | ||
999 |
_c55124 _d55124 |