Dynamic grouping of vehicle trajectories

By: Contributor(s): Material type: ArticleArticleDescription: 1 archivo (2,0 MB)Subject(s): Online resources: Summary: El volumen de tráfico vehicular de las grandes ciudades se ha incrementado en los últimos años originando problemas de movilidad, por ello el análisis de los datos del flujo vehicular toma importancia para los investigadores. Los Sistemas Inteligentes de transportación realizan el monitoreo y control vehicular recolectando trayectorias GPS, información que brinda en tiempo real la ubicación geográfica de los vehículos. Su procesamiento por medio de técnicas de agrupamiento permite identificar patrones sobre el flujo vehicular. Este trabajo presenta una metodología capaz de analizar el flujo vehicular en un área dada, identificando los rangos de velocidades y manteniendo actualizado un mapa interactivo que facilita la identificación de zonas de posibles atascos. Los resultados obtenidos sobre tres conjuntos de datos de las ciudades de Guayaquil-Ecuador, Roma-Italia y Beijing-China son satisfactorios y representan claramente la velocidad de desplazamiento de los vehículos identificando de manera automática los rangos más representativos para cada instante de tiempo.
Star ratings
    Average rating: 0.0 (0 votes)

Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)

El volumen de tráfico vehicular de las grandes ciudades se ha incrementado en los últimos años originando problemas de movilidad, por ello el análisis de los datos del flujo vehicular toma importancia para los investigadores. Los Sistemas Inteligentes de transportación realizan el monitoreo y control vehicular recolectando trayectorias GPS, información que brinda en tiempo real la ubicación geográfica de los vehículos. Su procesamiento por medio de técnicas de agrupamiento permite identificar patrones sobre el flujo vehicular. Este trabajo presenta una metodología capaz de analizar el flujo vehicular en un área dada, identificando los rangos de velocidades y manteniendo actualizado un mapa interactivo que facilita la identificación de zonas de posibles atascos. Los resultados obtenidos sobre tres conjuntos de datos de las ciudades de Guayaquil-Ecuador, Roma-Italia y Beijing-China son satisfactorios y representan claramente la velocidad de desplazamiento de los vehículos identificando de manera automática los rangos más representativos para cada instante de tiempo.

Journal of Computer Science & Technology, 2022, 22(2), pp. 141-150.