A memetic algorithm with self-adaptive local search : TSP as a case study

By: Contributor(s): Material type: ArticleArticleDescription: 1 archivo (268,7 kB)Subject(s): Online resources: Summary: In this paper we introduce a promising hybridization scheme for a Memetic Algorithm (MA). Our MA is composed of two optimization processes, a Genetic Algorithm and a Monte Carlo method (MC). In contrast with other GA-Monte Carlo hybridized memetic algorithms, in our work the MC stage serves two purposes: -- when the population is diverse it acts like a local search procedure and -- when the population converges its goal is to diversify the search. To achieve this, the MC is self-adaptive based on observations from the underlying GA behavior; the GA controls the long-term optimization process. We present preliminary, yet statistically significant, results on the application of this approach to the TSP problem.We also comment it successful application to a molecular conformational problem: Protein Folding.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number URL Status Date due Barcode
Capítulo de libro Capítulo de libro Biblioteca de la Facultad de Informática Biblioteca digital A0446 (Browse shelf(Opens below)) Link to resource No corresponde

Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)

In this paper we introduce a promising hybridization scheme for a Memetic Algorithm (MA). Our MA is composed of two optimization processes, a Genetic Algorithm and a Monte Carlo method (MC). In contrast with other GA-Monte Carlo hybridized memetic algorithms, in our work the MC stage serves two purposes: -- when the population is diverse it acts like a local search procedure and -- when the population converges its goal is to diversify the search. To achieve this, the MC is self-adaptive based on observations from the underlying GA behavior; the GA controls the long-term optimization process. We present preliminary, yet statistically significant, results on the application of this approach to the TSP problem.We also comment it successful application to a molecular conformational problem: Protein Folding.

International Genetic and Evolutionary Computation Conference (2000 jul., 8-12 : Las Vegas), pp. 897-994.