000 02621naa a2200277 a 4500
003 AR-LpUFIB
005 20250311170511.0
008 230201s2020 xx o 000 0 eng d
024 8 _aDIF-M8338
_b8558
_zDIF007630
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aAidelman, Yael
245 1 0 _aReddening-free Q indices to identify Be star candidates
300 _a1 archivo (851,7 kB)
500 _aFormato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aAstronomical databases currently provide high-volume spectroscopic and photometric data. While spectroscopic data is better suited to the analysis of many astronomical objects, photometric data is relatively easier to obtain due to shorter telescope usage time. Therefore, there is a growing need to use photometric information to automatically identify objects for further detailed studies, specially H emission line stars such as Be stars. Photometric color-color diagrams (CCDs) are commonly used to identify this kind of objects. However, their identification in CCDs is further complicated by the reddening effect caused by both the circumstellar and interstellar gas. This effect prevents the generalization of candidate identification systems. Therefore, in this work we evaluate the use of neural networks to identify Be star candidates from a set of OB-type stars. The networks are trained using a labeled subset of the VPHAS+ and 2MASS databases, with filters u, g, r, H, and K. In order to avoid the reddening effect, we propose and evaluate the use of reddening-free Q indices to enhance the generalization of the model to other databases and objects. To test the validity of the approach, we manually labeled a subset of the database, and use it to evaluate candidate identification models. We also labeled an independent dataset for cross dataset evaluation. We evaluate the recall of the models at a 99% precision level on both test sets. Our results show that the proposed features provide a significant improvement over the original filter magnitudes.
534 _aCloud Computing, Big Data & Emerging Topics, Conference, JCC-BD&ET, (8va : 2020 : La Plata, Argentina). Proceedings. Suiza, Springer Cham, 2020, pp. 111-123
650 4 _aASTRONOMÍA
653 _aestrellas tipo OB
653 _aclasificación estelar
700 1 _aEscudero, Carlos
700 1 _aRonchetti, Franco
700 1 _aQuiroga, Facundo Manuel
700 1 _aLanzarini, Laura Cristina
856 4 0 _uhttps://doi.org/10.48550/arXiv.2009.06017
942 _cCP
999 _c57403
_d57403