000 01395naa a2200193 a 4500
003 AR-LpUFIB
005 20250311170420.0
008 230201s2003 xx o 000 0 eng d
024 8 _aDIF-M6616
_b6755
_zDIF006033
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aMenni, Matías
245 1 0 _aAbout N-quantifiers
300 _a1 archivo (197,8 kB)
500 _aFormato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aGabbay and Pitts observed that the Fraenkel-Mostowski model of set-theory supports useful notions of name-abstraction and fresh-name. In order to understand their work in a more general setting we introduce the notions of И-units and И-relations in a regular category D. A И-relation is given by a functor A # (-):D-D and we show that in the case that D is a topos then A # (-) has a right adjoint [A](-) that can be thought of as an object of abstractions. We also explore the existence of a right adjoint to [A](-) and relate it to the name swapping operations considered as fundamental by Gabbay and Pitts. We present many examples of categories where this notions occur and we relate the results here with Pitts Nominal Logic.
534 _aApplied Categorical Structures 11(5), pp. 421-445.
856 4 0 _uhttp://dx.doi.org/10.1023/A:1025750816098
942 _cCP
999 _c55815
_d55815