000 01641naa a2200229 a 4500
003 AR-LpUFIB
005 20250311170417.0
008 230201s2005 xx o 000 0 eng d
024 8 _aDIF-M6518
_b6657
_zDIF005938
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aBonelli, Eduardo
245 1 0 _aRelating higher-order and first-order rewriting
300 _a1 archivo (435,2 KB)
500 _aFormato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aWe define a formal encoding from higher-order rewriting into first-order rewriting modulo an equational theory E. In particular, we obtain a characterization of the class of higher-order rewriting systems which can be encoded by first-order rewriting modulo an empty equational theory (that is, E = ∅). This class includes of course the λ-calculus. Our technique does not rely on the use of a particular substitution calculus but on an axiomatic framework of explicit substitutions capturing the notion of substitution in an abstract way. The axiomatic framework specifies the properties to be verified by a substitution calculus used in the translation. Thus, our encoding can be viewed as a parametric translation from higher-order rewriting into first-order rewriting, in which the substitution calculus is the parameter of the translation.
534 _aJournal of Logic and Computation, 15(6), pp. 901-947
650 4 _aSISTEMAS DE REESCRITURA
700 1 _aKesner, Delia
700 1 _aRios, Alejandro
856 4 0 _uhttp://dx.doi.org/ 10.1093/logcom/exi050
942 _cCP
999 _c55720
_d55720