TY - GEN AU - Bonelli,Eduardo AU - Kesner,Delia AU - Rios,Alejandro TI - Relating higher-order and first-order rewriting KW - SISTEMAS DE REESCRITURA N1 - Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca); Journal of Logic and Computation, 15(6), pp. 901-947 N2 - We define a formal encoding from higher-order rewriting into first-order rewriting modulo an equational theory E. In particular, we obtain a characterization of the class of higher-order rewriting systems which can be encoded by first-order rewriting modulo an empty equational theory (that is, E = ∅). This class includes of course the λ-calculus. Our technique does not rely on the use of a particular substitution calculus but on an axiomatic framework of explicit substitutions capturing the notion of substitution in an abstract way. The axiomatic framework specifies the properties to be verified by a substitution calculus used in the translation. Thus, our encoding can be viewed as a parametric translation from higher-order rewriting into first-order rewriting, in which the substitution calculus is the parameter of the translation UR - http://dx.doi.org/ 10.1093/logcom/exi050 ER -