Relating higher-order and first-order rewriting
Material type:
Item type | Home library | Collection | Call number | URL | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Biblioteca de la Facultad de Informática | Biblioteca digital | A0285 (Browse shelf(Opens below)) | Link to resource | Recurso en Línea |
Browsing Biblioteca de la Facultad de Informática shelves, Collection: Biblioteca digital Close shelf browser (Hides shelf browser)
Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
We define a formal encoding from higher-order rewriting into first-order rewriting modulo an equational theory E. In particular, we obtain a characterization of the class of higher-order rewriting systems which can be encoded by first-order rewriting modulo an empty equational theory (that is, E = ∅). This class includes of course the λ-calculus. Our technique does not rely on the use of a particular substitution calculus but on an axiomatic framework of explicit substitutions capturing the notion of substitution in an abstract way. The axiomatic framework specifies the properties to be verified by a substitution calculus used in the translation. Thus, our encoding can be viewed as a parametric translation from higher-order rewriting into first-order rewriting, in which the substitution calculus is the parameter of the translation.
Journal of Logic and Computation, 15(6), pp. 901-947